Structure Lie operator on real hypersurfaces of complex two-plane Grassmannians
نویسندگان
چکیده
It is proved that on a real hypersurface $M$ in the complex two-plane Grassmannian $G_2(\mathbb {C}^{m+2})$, structure Lie operator parallel if and only an open part of tube around totally geodesic {C}^{m+1})$ $G_2(\ma
منابع مشابه
Recurrent Jacobi Operator of Real Hypersurfaces in Complex Two-plane Grassmannians
In this paper we give a non-existence theorem for Hopf hypersurfaces in the complex two-plane Grassmannian G2(C) with recurrent normal Jacobi operator R̄N .
متن کاملReal hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ - parallel
We classify real hypersurfaces in complex projective spaces whose structure Jacobi operator is Lie parallel in the direction of the structure vector field. 2004 Elsevier B.V. All rights reserved.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملReal Hypersurfaces and Complex Analysis
1480 NOTICES OF THE AMS VOLUME 42, NUMBER 12 T he theory of functions (what we now call the theory of functions of a complex variable) was one of the great achievements of nineteenth century mathematics. Its beauty and range of applications were immense and immediate. The desire to generalize to higher dimensions must have been correspondingly irresistible. In this desire to generalize, there w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2022
ISSN: ['0010-1354', '1730-6302']
DOI: https://doi.org/10.4064/cm8558-1-2022